电影《法国空姐2》,在哪里可以看最新的韩国电影,无遮挡h肉动漫在线观看视频,日本春宫图电影在线,亚洲福利在线免费播放视频,亚洲av二区三区在线观看,欧美超重口sm虐乳折磨网站av,日本人妻出轨系列电影,91情侣国产一区二区三区亚洲情侣

2021首發(fā),西南大學王建軍教授:1-比特低管秩張量魯棒恢復(fù)的模型、理論與算法

日期:2021-03-24 10:32

2021年中國自動化學會云講座正式起航!首期云講座將于3月29日15:00-16:00開講,本期云講座邀請到西南大學王建軍教授,為大家?guī)韴蟾妫?/span>ROBUST ONE-BIT LOW-TUBAL-RANK TENSOR RECOVERY(1-比特低管秩張量魯棒恢復(fù)的模型、理論與算法),敬請期待!

 

報告人:西南大學教授 王建軍

 

報告題目:

ROBUST ONE-BIT LOW-TUBAL-RANK TENSOR RECOVERY

1-比特低管秩張量魯棒恢復(fù)的模型、理論與算法

報告摘要:

This talk focuses on the recovery of low-tubal-rank tensors from binary measurements based on tensor-tensor product (or t-product) and tensor Singular Value Decomposition (t-SVD). Two types of recovery models are considered, one is the tensor hard singular tube thresholding and the other one is the tensor nuclear norm minimization. In the case no random dither exists in the measurements, our research shows that the direction of tensor XR^(n1×n2×n3) with tubal rank r can be well approximated from O(r(n1+n2)n3) random Gaussian measurements. In the case nonadaptive dither exists in the measurements, it is proved that both the direction and the magnitude of X can be simultaneously recovered. As we will see, under the nonadaptive measurement scheme, the recovery errors of two reconstruction procedures decay at the rate of polynomial of the oversampling factor λ=m/"r(n1+n2)n3" (m is the random Gaussian measurements). In order to obtain faster decay rate, we introduce a recursive strategy and allow the dithers in quantization to be adaptive to previous measurements for each iterations. Under this quantization scheme, two iterative recovery algorithms are proposed which establish recovery errors decaying at the rate of exponent of the oversampling factor λ. Numerical experiments on both synthetic and real-world data sets are conducted and demonstrate the validity of our theoretical results and the superiority of our algorithms.

報告人簡介:

王建軍,博士,西南大學三級教授,博士生導(dǎo)師,重慶市學術(shù)帶頭人,重慶市創(chuàng)新創(chuàng)業(yè)領(lǐng)軍人才,巴渝學者特聘教授,重慶工業(yè)與應(yīng)用數(shù)學學會副理事長,CSIAM全國大數(shù)據(jù)與人工智能專家委員會委員,美國數(shù)學評論評論員,曾獲重慶市自然科學獎勵。主要研究方向為:高維數(shù)據(jù)建模、機器學習(深度學習)、數(shù)據(jù)挖掘、壓縮感知、張量分析、函數(shù)逼近論等。在神經(jīng)網(wǎng)絡(luò)(深度學習)逼近復(fù)雜性和高維數(shù)據(jù)稀疏建模等方面有一定的學術(shù)積累。主持國家自然科學基金5項,教育部科學技術(shù)重點項目1項,重慶市自然科學基金1項,主研8項國家自然、社會科學基金;現(xiàn)主持國家自然科學基金面上項目2項,參與國家重點基礎(chǔ)研究發(fā)展‘973’計劃一項, 多次出席國際、國內(nèi)重要學術(shù)會議,并應(yīng)邀做大會特邀報告22余次。 

已在IEEE Transactions on Pattern Analysis and Machine Intelligence(2), IEEE Transactions on Neural Networks and Learning System(2),Applied and Computational Harmonic Analysis(2),Inverse Problems, Neural Networks, Signal Processing(2), IEEE Signal Processing letters(2), Journal of Computational and applied mathematics, ICASSP,IET Image processing(2), IET Signal processing(4),中國科學(A,F輯)(4), 數(shù)學學報, 計算機學報, 電子學報(3)等知名專業(yè)期刊發(fā)表90余篇學術(shù)論文,IEEE等系列刊物,National Science Review 及Signal Processing,Neural Networks,Pattern Recognization,中國科學, 計算機學報,電子學報,數(shù)學學報等知名期刊審稿人。

報名方式:

1、請?zhí)崆跋螺d釘釘PC端或手機安裝釘釘APP。

2、打開釘釘掃一掃,掃描下方二維碼加入直播群。

來源:學會秘書處